quantax.optimizer.TimeEvol#
- class quantax.optimizer.TimeEvol#
Bases:
SRTime evolution optimizer, equivalent to real-time
SR. This optimizer assumes the number of samples is more than the number of parameters, and is more memory-efficient thanSRwhen this is the case.- __init__(state: Variational, hamiltonian: Operator, solver: Callable | None = None)#
- Parameters:
state – Variational state to be evolved.
hamiltonian – Hamiltonian operator for time evolution.
solver – The numerical solver for \(Sx = F\), default to pseudo-inverse.
- get_SF(samples: Samples) Tuple[Array, Array]#
Compute \(S = \bar O^\dagger \bar O\) and \(F = \bar O^\dagger \bar \epsilon\) with the given samples. When the number of samples is large, this function will automatically switch to a more memory-efficient implementation.
- get_step(samples: Samples) Array#
Obtain the optimization step by solving the equation \(\bar O \dot \theta = \bar \epsilon\) for given samples.
- property VarE: float | None#
Energy variance \(\left< (H - E)^2 \right>\) of the current step.
- property energy: float | None#
Energy of the current step.
- get_Ebar(samples: Samples) Array#
Compute \(\bar \epsilon\) for given samples. The local energy is \(E_{loc, s} = \sum_{s'} \frac{\psi_{s'}}{\psi_s} \left< s|H|s' \right>\), and \(\bar \epsilon\) is defined as \(\bar \epsilon = \frac{1}{\sqrt{N_s}} (E_{loc, s} - \left<E_{loc, s}\right>)\).
- get_Obar(samples: Samples) Array#
Calculate \(\bar O = \frac{1}{\sqrt{N_s}}(\frac{1}{\psi} \frac{\partial \psi}{\partial \theta} - \left< \frac{1}{\psi} \frac{\partial \psi}{\partial \theta} \right>)\) for given samples.
- property holomorphic: bool#
Whether the state is holomorphic.
- property imag_time: bool#
Whether to use imaginary-time evolution.
- save(file: str | Path | BinaryIO) None#
Save the optimizer internal quantities to a file.
- property state: Variational#
Variational state to be optimized.