model#

Neural quantum states#

It’s recommended to use ResSum when one needs a deep NQS.

SingleDense(features, actfn, use_bias, ...)

RBM_Dense(features[, use_bias, dtype])

The restricted Boltzmann machine with one dense layer \(\psi(s) = \prod \cosh(W s + b)\).

SingleConv(channels, actfn[, use_bias, ...])

Network with one convolutional layer \(\psi(s) = \prod f(\mathrm{Conv}(s))\).

RBM_Conv(channels[, use_bias, dtype])

The restricted Boltzmann machine with one convolutional layer \(\psi(s) = \prod \cosh(\mathrm{Conv}(s))\).

ResProd(nblocks, channels, kernel_size, ...)

The convolutional residual network with a product in the end.

SchmittNet(depth, channels, kernel_size[, dtype])

CNN defined in PRL 125, 100503.

ResSum(nblocks, channels, kernel_size[, ...])

The convolutional residual network with a summation in the end.

Triangular_ResSum(nblocks, channels[, ...])

The ResSum equivalence for Triangular and TriangularB lattices.