nn#

Modules#

Sequential(layers[, holomorphic])

A sequence of equinox.Module applied in order similar to Sequential in Equinox.

NoGradLayer()

The layer in which the pytree leaves are not considered as differentiable parameters in Quantax computations.

filter_grad(fun, *[, has_aux])

Creates a function that computes the gradient of fun similar to equinox.filter_grad.

filter_vjp(fun, *primals[, has_aux])

Like equinox.filter_vjp.

Activation function#

Scale(scale)

Rescale the input \(f(x) = x * \mathrm{scale}\)

ScaleFn(fn, features, scaling, dtype)

Apply a function to a rescaled input \(f(x) = fn(x * \mathrm{scale})\).

Theta0Layer()

The activation layer with output \(f(x) = g(x) * \exp(\theta_0)\).

SinhShift()

\(f(x) = (\sinh(x) + 1) \exp(\theta_0)\)

Prod()

\(f(x) = \exp(\theta_0) \prod x\)

Exp()

\(f(x) = \exp(x + \theta_0)\)

pair_cpl(x)

Make a real input complex by splitting it into two parts, one taken as the real part and the other the imaginary part.

Initializers#

apply_lecun_normal(key, net)

Apply the Lecun normal initializer to the weights of the layer.

apply_he_normal(key, net)

Apply the He normal initializer to the weights of the layer.

NQS layers#

ReshapeConv(dtype)

Reshape the input to the shape suitable for convolutional layers.

ConvSymmetrize([symm])

Symmetrize the output of a convolutional network according to the given symmetry.