Skip to main content
Ctrl+K

Quantax 0.2.1 documentation

  • Quick Start
  • Exact diagonalization
  • Build your network
  • Samples and Measurement
  • Square J1-J2 model
    • Triangular Heisenberg model
    • Fermion mean field
    • Neural Jastrow
    • Real-time dynamics
    • Local updates
    • Restricted Boltzmann machine
    • Time-dependent variational principle
    • Minimum-norm stochastic reconfiguration
    • Neural network backflow
    • global_defs
    • sites
    • symmetry
    • operator
    • nn
    • model
    • state
    • sampler
    • optimizer
    • utils
    • Related packages
    • Research papers
  • Quick Start
  • Exact diagonalization
  • Build your network
  • Samples and Measurement
  • Square J1-J2 model
  • Triangular Heisenberg model
  • Fermion mean field
  • Neural Jastrow
  • Real-time dynamics
  • Local updates
  • Restricted Boltzmann machine
  • Time-dependent variational principle
  • Minimum-norm stochastic reconfiguration
  • Neural network backflow
  • global_defs
  • sites
  • symmetry
  • operator
  • nn
  • model
  • state
  • sampler
  • optimizer
  • utils
  • Related packages
  • Research papers

Section Navigation

  • Time-dependent variational principle

Time-dependent variational principle#

Paper title: Quantum Many-Body Dynamics in Two Dimensions with Artificial Neural Networks

Paper authors: Markus Schmitt and Markus Heyl

arXiv:1912.08828 (2019)

Phys. Rev. Lett. 125, 100503 (2020)

Related tutorials: Real-time dynamics

Estimated cost:

previous

Restricted Boltzmann machine

next

Minimum-norm stochastic reconfiguration

This Page

  • Show Source

© Copyright 2025, Ao Chen.

Created using Sphinx 8.2.3.

Built with the PyData Sphinx Theme 0.16.1.